72335 # Impact melt Breccia 108.9 grams Figure 1: Location of 72335 on boulder #2 on landslide off of South Massif. Boulder is ~ 2 - 3 meters high. AS17-137-20918. | Transer
LMP
CDR | Hey, that's a different rock, Gene (station 2 boulder #2). Yes. Well, it looks like the same texture, but it's got that flaky fracture pattern all over it. I'm going to get a stereo while I'm at it. This ought to cover any samples I take off of that thing. This is a crystalline rock, Houston. It's got nice white halos around the pits. The zaps are not – dense black glass, but very dark greenish-grey. Are those halos or fragments? No, they're halos. Well, they are fragments, I think, also. It's fairly crystalline, but it is heterogeneous. Matter of fact there's a big fragment of a porphyry caught up in this thing, I think. There's a chunk there we can get. That's a big fragment within this crystalline rock – Inclusion (72315). | LMP | It's a relatively angular inclusion about ahalf a meter in size, and it's a square cross section. Well it's irregular; but generally square cross section. It's in bag 516, and looks like a high feldspar rock. It may be an anorthositic gabbro, but it does look like a prophyry. There's a big chunk where I've got – I can't get it out though; it's buried in a rock – half of an inch elongated – I can't see whether they are colorless or not, but they | | |---------------------------------|--|---------------------------------|---|--| | CDR
LMP | | LMP
CDR
LMP
CDR
LMP | are certainly reflective crystals. And then in the big rock you've got massive things like this big fragment here that's 5 inches across. That may be spall point, Gene, that's a lighter color, in general, because of a zap or something. Let me get some more samples of it. Yes, we need to get some of the host rock here. We'll get a piece here. | | | CDR
LMP
CDR
LMP
CDR | Take a picture of that and then your locator, I'll get it. Looks like a porphyry. It does look like a crystalline rock. Looks like an andesite prophyry. The has got the very large crystals in there. They're very reflective, elongated crystals. | | You're still sampling the one we just got. So we'll get another one (72335). The same kind – or the contact of that rock looks like it might be finer grained – but it's about the same – in 517. That's the contact in the inclusion side of the contact. Keep going after the other one, Gene, I'll get this in your bag. | | Figure 2: Exterior and interior surface of 72335. Cube is 1 cm. S73-16247 and S73-23543. LMP The host rock for the inclusion, which appears to be also crystalline, but may be a recrystallized rock of some kind - - metamorphic – also looks like a high plagioclase – high feldspar, anyway. That's in bag 518 – and that was a loose frag – fairly loose, but in place fragment along the fracture zone (72355). CRD I'm going to try to get the rest of it up there. LDR This is a medium-green anorthositic gabbro, and it looks like it has some pastel-green olivine crystals in it. Did you get it? CDR I can't get any more of it, Jack, up there. I can't reach any more. LMP OK, and that small chip of that is in bag 519 (72375). It's the same host rock, much like the previous samples. Another chunk of the host – It's in there. I haven't closed your bag yet. And we got to get one soil sample up the hill here. CC Was that last sample in 518, as well? LMP No. We haven't put it in yet. CRD That will go in 499 (72395). MP This is a fairly uniform looking rock. It does have some widely spaced fractures across it. It's clearly crystalline and had crystalline inclusions in it. Both rocks look like they might be in the anorthositic class of rocks. It's just that it has the appearance of being finer grain matrix. Looks like a porphyry in the boulder. ## **Mineralogical Mode for 72395** | | Dymek et al. 1976 | |--------------|-------------------| | Olivine | 8.8 vol. % | | Low-Ca Pyx. | 25.4 | | High-Ca Pyx. | 5.9 | | Plagioclase | 56.2 | | Ilmenite | 1.3 | | Phosphate | 0.9 | | _ | | Figure 3: Thin section 72335 (referred to as "anomalous" by Dymek et al. 1976). Figure 4: Thin section photomicrograph of 72335 by Ryder (1993) illustrating granulite clast in micropoikilitic matrix. Figure 5: Composition of pyroxene and olivine in 72335 (from Dymek et al. 1976). #### **Introduction** 72335 was sampled, along with 72315, as a white clast in the large station #2 boulder (see transcript). However, most of it turned out to be similar to the matrix of the boulder (see section on 72395), and the astronauts were apparently simply seeing an area (spall?) that was free of dark patina (figure 2). This sample has not been dated, but can be assumed to have the same age as 72395 (3.9 b.y.). Figure 6: Normalized rare-earth-element diagram for 72335, including the initial data for a clast. ## **Petrography** Most of 72335 is similar to the other samples collected form this same boulder (72315, 72355, 72375 and 72395). They are all vesicular micropoikilitic impact melt breccias. ### Significant Clast *Feldspathic Granulite:* Dymek et al. (1976) show a granulitic texture for a clast from 72335 (figure 3). ### **Mineralogy** *Olivine:* The compositon of olivine grains is tightly grouped at $Fo_{70\pm2}$. **Pink Spinel:** Pink spinel grains are Mg- and Al-rich in the center and zone to more Cr-rich at the edge. **Pyroxene:** The composition of pyroxene is depicted in figure 5. **Plagioclase:** Plagioclase ranges in composition from $Or_{0.2}Ab_{2}An_{98}$ to about $Or_{3}Ab_{22}An_{75}$ (Dymek et al. 1976). *Ilmenite:* Ilmenite in 72335 is evenly dispersed in the matrix, has a seive-like texture and is Mg-rich. *Metallic Iron:* Metallic iron is meteoritic in origin (see figure 7 in section on 72395). *Armalcolite:* Armalcolite is found included in ilmenite and is Zr-rich. #### Chemistry The chemical composition of the matrix of 72335 is found to be identical to that of other samples of this Table 1. Chemical composition of 72335. | reference
weight | Laul74
exterior | Laul and | Schmitt 1 | 975 | Tera74 | |---|---|---|--|---|-------------| | SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum | 0.6
27.3
4.8
0.06
8
15.4
0.45
0.12 | 1.6
18.2
8.6
0.112
11
10.7
0.61
0.27 | 1.6
18.3
8.8
0.114
12
11
0.6
0.34 | (a)
(a)
(a)
(a)
(a)
(a)
(a) | 0.1037 | | Sc ppm
V
Cr
Co
Ni
Cu
Zn | 8
30
684
28
360 | 16
50
1300
23
200 | 18
50
1368
26
230 | (a)
(a)
(a)
(a)
(a) | | | Ga Ge ppb As Se Rb Sr Y Zr Nb | 67
2
145
150 | 450 | 450 | (a) | 1.88
148 | | Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb Cs ppm Ba La Ce | 0.7
80
0.8
1.5
0.095
120
13.2
31 | 300
31.6
82 | 300
30
80 | (a)
(a)
(a) | | | Pr
Nd
Sm
Eu | 21
5.8
0.9 | 54
14.1
1.84 | 50
13.5
1.82 | (a)
(a)
(a) | | | Gd
Tb
Dy
Ho
Er | 1.1
7 | 2.7
17 | 3.1
20 | (a)
(a) | | | Tm Yb Lu Hf Ta W ppb Re ppb Os ppb | 4.2
0.55
4.2
0.59
1.4 | 10.4
1.4
10
1.5 | 10.2
1.4
10
1.5 | (a)
(a)
(a)
(a) | | | Ir ppb Pt ppb Au ppb Th ppm U ppm technique | 5.3
2.4
0.71
(a) INAA, | 4
4.6
1.3
(b) RNAA, | 4
4.8
1.3
(c) IDM | (a)
(a)
(a)
S | | boulder (see 73215). However, Laul and Schmitt (1974) also determined the composition of a white clast (figure 6). ## Radiogenic age dating The age of 72335 has not been measured, but is assumed to be \sim 3.9 b.y. (as measured for 72395). Tera et al. (1974) determined a Rb-Sr model age of 4.49 b.y. ## **Processing** (c) (c) Boulder 2 was a "Wasserburg consortium". A saw cut, but not a slab, was made through the middle of 72335 (figure 7), so that part could be placed in "remote storage". There are 4 thin sections. Figure 7: Saw cut through 72335. S75-34401. Scale is marked in cm and mm. Figure 8: Sawn surface of 72335,16. Sample is 3.5 cm across. S76-24377. Figure 9: Sawn surface of 72335,0 showing saw marks and vesicular interior. S75-34400. #### References for 72335 Albee A.L., Chodos A.A., Dymek R.F., Gancarz A.J. and Goldman D.S. (1974) Preliminary investigation of Boulders 2 and 3, Apollo 17, Station 2: Petrology and Rb-Sr model ages.(abs). Lunar Sci. V, 6-8. Lunar Planetary Institute, Houston. Butler P. (1973) Lunar Sample Information Catalog Apollo 17. Lunar Receiving Laboratory. MSC 03211 Curator's Catalog. pp. 447. Dymek R.F., Albee A.L. and Chodos A.A. (1976a) Petrology and origin of Boulders #2 and #3, Apollo 17 Station 2. Proc. 7th Lunar Sci. Conf. 2335-2378. Laul J.C. and Schmitt R.A. (1974a) Chemical composition of boulder-2 rocks and soils, Apollo 17, Station 2. Earth Planet. Sci. Lett. 23, 206-219. Laul J.C., Hill D.W. and Schmitt R.A. (1974) Chemical studies of Apollo 16 and 17 samples. Proc. 5th Lunar Sci. Conf. 1047-1066. Laul J.C. and Schmitt R.A. (1975c) Chemical composition of Apollo 17 samples: Boulder breccias (2), rake breccias (8), and others. Lunar Planet. Sci. VI, 489-491. Lunar Planetary Institute, Houston. LSPET (1973) Apollo 17 lunar samples: Chemical and petrographic description. Science 182, 659-672. LSPET (1973) Preliminary Examination of lunar samples. Apollo 17 Preliminary Science Rpt. NASA SP-330. 7-1 – 7-46. Muehlberger et al. (1973) Documentation and environment of the Apollo 17 samples: A preliminary report. Astrogeology 71 322 pp superceeded by Astrogeology 73 (1975) and by Wolfe et al. (1981) Muehlberger W.R. and many others (1973) Preliminary Geological Investigation of the Apollo 17 Landing Site. *In* **Apollo 17 Preliminary Science Report.** NASA SP-330. Ryder G. (1993) Catalog of Apollo 17 rocks: Stations 2 and 3. Curators Office JSC#26088. Simonds C.H., Phinney W.C. and Warner J.L. (1974) Petrography and classification of Apollo 17 non-mare rocks with emphasis on samples from the Station 6 boulder. Proc. 5th Lunar Sci. Conf. 337-353. Tera F., Papanastassiou D.A. and Wasserburg G.J. (1974a) Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1-21. Wolfe E.W., Bailey N.G., Lucchitta B.K., Muehlberger W.R., Scott D.H., Sutton R.L and Wilshire H.G. (1981) The geologic investigation of the Taurus-Littrow Valley: Apollo 17 Landing Site. US Geol. Survey Prof. Paper, 1080, pp. 280.